Introduction 00000 Volatility Curve Fitting 0000000000000000000

Conclusion

# High Performance Options Analytics and Volatility Modeling

Timothy R. Klassen

#### Founder and CEO, Volar Technologies LLC

timothy.klassen@volar.io

Columbia University

April 13, 2016

イロト 不得 トイヨト イヨト

| Introduction | Dividend Modeling | Volatility Curve Fitting                |                                         | Conclusion |
|--------------|-------------------|-----------------------------------------|-----------------------------------------|------------|
| 0000         | 0000000           | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00         |
|              |                   |                                         |                                         |            |

## Outline

- Introduction
- Dividend Modeling
- Volatility Curve Design and Fitting
- Volatility Fitting Examples
- Conclusion

References and Details:

Pricing Vanilla Options with Cash Dividends

Necessary and Sufficient No-Arbitrage Conditions for the SSVI/S3 Volatility Curve

A General and Practical Volatility Curve Framework (in preparation, 2016)

# Mysteries of the (Listed) Equity Options World

- Why do data vendors have different vols for calls and puts, no greeks for many options (ITM, some OTM), and bad implied dividends?
- Why do CNBC, Bloomberg, et al never show sexy vol curves?
- Why does every half-way serious options trading team write their own valuation (pricer, fitter for borrows and vols) and trade analysis infrastructure (mark-ups, PnL decomposition, TCA, etc)?
- Lead-lag relationships in vol space are orders of magnitude slower than in the equity domain.
- Some leading options market makers (OMMs) use hand-calibrated (not auto-fitted) vol surfaces.

## Equity Options Market Overview

- In US alone there are 500,000+ options on 4,000+ underliers.
  - Most do not trade on any given day. Most have very wide bid-ask spreads at any given time, especially ITM and very OTM options.
  - Even liquid underliers can have such options.
  - OTOH: Some options have super-tight spreads that are hard to fit with "reasonable" vol skew curves.
- All options can only be valued with real-time, robust implied borrow and sophisticated volatility curves.
- Also required for real-time risk and PnL decomposition.
- Well-designed parametric curves are needed for sensible book-level sensitivities (vanillas + exotics): *normalized vega, skew vega*, etc
- All borrow and vol curves are proprietary. Despite big efforts, no data/analytics vendor has them (even EOD historical).

| Introduction | Dividend Modeling | Volatility Curve Fitting | Examples | Conclusion |
|--------------|-------------------|--------------------------|----------|------------|
| 00000        |                   |                          |          |            |
|              |                   |                          |          |            |

#### Mysteries.... in more detail

- The equity options market is complicated due to dividends, borrow costs, events, and vol curves with lots of structure – but spreads can be very tight. Nowadays most liquid options (SPY, QQQ, AAPL, VXX) are American-style (much harder than future/index options)
- To value all vanilla options on an equity underlier one needs:
  - Interest rates freely available (but which one?)
  - Dividend projections can be bought (but pretty expensive)
  - Borrow curve not available for purchase at any price
  - Volatility surface, volatility TTX not available at any price
- To value exotics, one needs an arbitrage-free volatility surface also in the far wings, as input to SLVJ calibrators (not available).
- A dirty secret of the options industry is: Only a handful out of hundreds of players know (sort of):
  - How to properly price with cash dividends (model & algo issue)
  - How to imply stable borrow cost curves
  - How to design, and robustly calibrate tradable vol curves in real-time

(日)、

## What do Vanilla Options Market Makers do?

- Use "hacked" Black-Scholes framework for valuation & risk mngt:
  - Pick dividend model, as well as dividend amount, dates.
  - Figure out borrow cost term-structure.
  - Use a volatility TTX (affects relative early-exercise premia).
  - Decide on event weights (underlier specific: FOMC, earnings).
  - Manage or fit implied volatility curves/surface.
  - For greeks use implied vol σ = σ(T, K) in Black-Scholes model, but correct for spot-vol dynamics (smart delta).
  - Have good and fast underlier valuation.
  - Need fast & robust American pricer (with proper div model).
- Why Black-Scholes?
- Should there be one borrow cost per term?
- Should same implied vol be used for call and put at a given maturity and strike *T*, *K*?

## **Dividend Modeling**

- Forty years after Black-Scholes there is no consensus on how to model cash dividends!
- Cash dividends mean that the observed stock price can not follow geometric Brownian motion (GBM).
- In a vanilla context the question is how to combine the stochastic part of underlier evolution (e.g. *who* follows GBM?) with...
- Three types of dividends:
  - A dividend yield used to model borrow cost
  - Cash dividends how most dividends are actually paid
  - Discrete proportional dividends
- Most firms use *blending scheme* to transition from cash dividends on short end to proportional dividends in long term.
- Proportional divs are also useful in times of extreme uncertainty (market-wise or name-specific). E.g. during 2008 crisis.

| Dividend Modeling | Volatility Curve Fitting | Examples | Conclusion |
|-------------------|--------------------------|----------|------------|
| 000000            |                          |          |            |
|                   |                          |          |            |

### **Dividend Models**

- Main two classes of dividend models are:
  - *Spot model*: The dividends come out of the observed stock price. (Need to modify cash dividends at low stock price.)
  - *Hybrid models*: The dividends come out of a "cash buffer", related to the PV of future dividends:  $S_t = \tilde{S}_t + D_t$
- Spot model might seem naively more reasonable, but in practice leads to a lot of complications and hacks, since not GBM.
- Hybrid models are much simpler to handle for both vanillas and exotics, since *pure stock* S
  <sub>t</sub> still follows GBM. Can also easily handle credit risk, extension to (light) exotics, local vols, etc.
- We will assume a hybrid model from now on.
- NOTE: Even if you care only about European options, dividend modeling matters how e.g. are SPX and SPY vols related?

| Dividend Modeling | Volatility Curve Fitting | Examples | Conclusion |
|-------------------|--------------------------|----------|------------|
| 000000            |                          |          |            |
|                   |                          |          |            |

#### Hybrid Models, Notation

 In a hybrid model the stock follows *shifted GBM*, and the prices of (un-discounted) European vanillas for the pure stock are:

$$\hat{C} = + F N(d_{+}) - K N(d_{-})$$
 (1)

$$\hat{P} = -FN(-d_{+}) + KN(-d_{-})$$
 (2)

• Here N(x) is the normal cdf, log-moneyness  $y := \log(K/F)$ , and

$$d_{\pm} := \frac{-y}{\hat{\sigma}} \pm \frac{1}{2}\hat{\sigma}$$
 ,  $\hat{\sigma} := \sigma\sqrt{T}$ 

•  $\sigma = \sigma(T, K)$  is the implied volatility of the option.

- Normalized prices  $\hat{V}/F$  are function of two dim-less variables: y,  $\hat{\sigma}$ .
- Actual prices are obtained by shifting the forward F = F<sub>T</sub> and strike K by the shift D<sub>T</sub>, that depends on the hybrid model.
- For details: Pricing Vanilla Options with Cash Dividends (SSRN).

Introduction Dividend Modeling Volatility Curve Fitting Examples



Time t

The shifts  $D_t$  for various hybrid models with r=3%, q=1%, and a quarterly cash dividend of 0.5 first paid at  $t_1=0.085$ , using blending scheme (2, 4).

For PHM, SKA: using T = 1.01. FHM = HM2, PHM = HM1, SKA = HM3

| Dividend Modeling | Volatility Curve Fitting | Examples | Conclusion |
|-------------------|--------------------------|----------|------------|
| 0000000           |                          |          |            |
|                   |                          |          |            |



Implied ATF borrow rate term-structure of various models calibrated to reference market HM2 with r=3%, q=1%,  $\sigma=30\%$ , and a quarterly cash dividend of 2 first paid at  $t_1=0.085$ . Exercise-style is American and N=65.

| Dividend Modeling | Volatility Curve Fitting | Conclusion |
|-------------------|--------------------------|------------|
| 0000000           |                          |            |
|                   |                          |            |



Implied ATF volatility term-structure of various models calibrated to reference market HM2 with r=3%, q=1%,  $\sigma=30\%$ , and a quarterly cash dividend of 2 first paid at  $t_1=0.085$ . Exercise-style is American and N=65.

| Introduction<br>00000 | Dividend Modeling<br>000000● | Volatility Curve Fitting | Examples | Conclusion<br>00 |
|-----------------------|------------------------------|--------------------------|----------|------------------|
|                       |                              |                          |          |                  |



Implied borrow skew of various models calibrated to reference market HM2 with r=3%, q=1%,  $\sigma=30\%$ , and a quarterly cash dividend of 2 first paid at  $t_1=0.085$ . We show the skew just before, T=0.33 (solid), and after, T=0.34 (dashed), the second dividend. Exercise-style is American and N=65.

A (10) < A (10)</p>

3

## Volatility Curve Parametrization Wish List

- Parameters should have simple, intuitive meaning, esp. first three.
- Parameters should be "independent", stable from day to day (parsimonious).
- Little term-structure, if possible.
- No-arbitrage constraints should be "easy" to incorporate.
- Parametric vols should be easy/fast to compute.
- No hacks! (in wings, etc)
- Vol curves arising from standard "SLVJ"-type model should be fittable within a few bps (at worst).

#### Benefits of good volatility curve/surface parametrization

- Can (pretty) easily be set/checked by humans if necessary/desired.
- With suitable fitting framework, have hope of producing fast and robust implied vol curves/surfaces.
- Portfolio level greeks via parameter bumps make sense for vanillas and exotics, and are east and fast to calculate.
- Local vols can be produced fast & robustly via Dupire formula.
- If we can fit all SLVJ models, can fit all real-world surfaces(?).

| Dividend Modeling | Volatility Curve Fitting                | Examples | Conclusion |
|-------------------|-----------------------------------------|----------|------------|
|                   | 000000000000000000000000000000000000000 |          |            |

#### Our parametrization approach

- Work one term at a time, impose smoothness across terms.
- Factor out overall vol level (ATF) as:  $\sigma_0 := \sigma(T, K = F)$ .
- Define "shape" curve f(z) = f(z|p) as function of normalized strike (NS)<sup>1</sup>

$$z := \frac{y}{\hat{\sigma}_0} = \frac{\log(K/F)}{\sigma_0\sqrt{T}}$$

such that

$$\sigma(z)^2 = \sigma_0^2 f(z|\mathbf{p})$$

 There are no standard definitions – we define dimensionless "skew" and "smile/convexity" as slope and curvature of shape curve:

$$f(z) =: 1 + \frac{s_2}{z} z + \frac{1}{2} c_2 z^2 + \dots$$

<sup>1</sup>For hybrid models with  $D \neq 0$ , use:  $K/F \rightarrow (K - D)/(F - D)$ .

## Our parametrization approach (cont'd)

- s<sub>2</sub> and c<sub>2</sub> tend to have mild term-structure; they are even comparable across names. Have been range-bound for decades.
- Sometimes it is useful to work with s<sub>1</sub>, c<sub>1</sub> defined via

$$\sigma(z) =: \sigma_0 (1 + s_1 z + \frac{1}{2} c_1 z^2 + \ldots)$$

• Trivially: 
$$s_2 = 2s_1$$
,  $c_2 = 2(c_1 + s_1^2)$ .

Note that

$$\sigma(z) = \sigma_0 + \frac{s_1}{\sqrt{T}} \log(K/F) + \dots,$$

so that an alternative definition of skew

$$\tilde{s}_1 := K \frac{\partial \sigma}{\partial K}|_{K=F} = \frac{s_1}{\sqrt{T}}$$

No simple relationships between alternative definitions of curvature/convexity/smile.

Dividend Modeling 0000000

## No-Arbitrage Constraints in Vol-Space

• No butterfly arbitrage: Implied density  $\rho$  should be positive

$$\begin{split} \hat{C}(T,K) &= \int_0^\infty dS_T \; (S_T - K)_+ \; \rho_T(S_0 \to S_T) \\ \Rightarrow \quad \partial_K^2 \hat{C}(T,K) \;=\; \rho_T(S_0 \to S)|_{S=K} \end{split}$$

- No calendar arbitrage: Total BS variance w(y) := Tσ(y)<sup>2</sup> has to be increasing in T at any fixed y.
- Necessary (but generally not sufficient) constraint on the asymptotic wing behavior of implied vols (R. Lee, 2004):

$$w(y) \leq 2|y|$$
 as  $|y| o \infty$ 

Introduction Dividend Modeling Volatility Curve Fitting Examples Conclusion

#### Simple consequences: Implied density 1

• Local vols and implied densities can be calculated most neatly in terms of the total variance  $w(y) = T\sigma(z)^2$ . Eg the implied density:

$$\rho(y) = \frac{g(y)}{\hat{\sigma}(y)} n(d_{-}(y)) ,$$

where n(x) = N'(x) is the normal density, and

$$g(y) = \left(1 - \frac{y w'(y)}{2w(y)}\right)^2 - \frac{1}{4}\left(\frac{1}{w(y)} + \frac{1}{4}\right)w'(y)^2 + \frac{1}{2}w''(y)$$

- Absence of butterfly arbitrage:  $g(y) \ge 0$  for all y.
- In Black-Scholes case: g(y) = 1 for all y.
- NOTE: Will use same symbol whether we consider a quantity a function of z or y.

|  | Dividend Modeling | Volatility Curve Fitting | Examples | Conclu |
|--|-------------------|--------------------------|----------|--------|
|  |                   | 000000000000000000       |          |        |
|  |                   |                          |          |        |

#### Simple consequences: Implied density 2

- For our vol curve parametrizations  $w(y) = \hat{\sigma}_0^2 f(z)$ .
- Then  $w'(y) = \hat{\sigma}_0 f'(z)$  and w''(y) = f''(z), so that

$$g(y) = \left(1 - \frac{z f'(z)}{2f(z)}\right)^2 - \frac{1}{4} \frac{f'(z)^2}{f(z)} - \frac{\partial_0^2}{16} f'(z)^2 + \frac{1}{2} f''(z) =: g(z).$$

- The vol level appears in only one place! All else only depends on shape parameters.
- Makes the analysis of butterfly arbitrage significantly simpler (but is still very hard in general).
- Will see example later for S3/SSVI curve.

|       | Dividend Modeling | Volatility Curve Fitting |                                         | Conclusion |
|-------|-------------------|--------------------------|-----------------------------------------|------------|
| 00000 | 000000            | 000000000000000000       | 000000000000000000000000000000000000000 | 00         |

### ATF No-Arbitrage Constraints

• If 
$$w(z) = \hat{\sigma}_0^2 (1 + s_2 z + \frac{1}{2}c_2 z^2 + ...)$$
, then  
 $g(z=0) = 1 + \frac{1}{2}c_2 - \frac{1}{4}s_2^2 (1 + \frac{1}{4}\hat{\sigma}_0^2)$ 

•  $g(0) \ge 0$  implies upper bound on slope

$$s_2^2 \leq rac{4+2c_2}{1+rac{1}{4}\hat{\sigma}_0^2}$$

or lower bound on curvature  $(c_1 = \frac{1}{2}c_2 - \frac{1}{4}s_2^2)$ 

$$c_1 \geq -1 + rac{1}{16} s_2^2 \hat{\sigma}_0^2 \approx -1$$

• Very relevant around FOMC and earnings where not just  $c_1 < 0$  but even  $c_2 < 0$  can happen!

### Specific Curves: Parabolas

- What are simplest possible curves? Need at least 3 parameters for ATF behavior.
- Vendors often use

$$\sigma(y)^n = \sigma_0^2 + s y + \frac{1}{2}c y^2 \qquad \text{(or in terms of } z)$$

- Obviously has arbitrage in wings for n = 1, 2.
- Slight hope for n = 4, but would imply symmetric wings, which is intuitively and empirically wrong.
- Positivity has to be enforced too.
- Must do better...

## Specific Curves: S3/SSVI

• Simplest sensible curve with 3 parameters  $(c_2 \ge 0)$ :

$$\sigma^{2}(z) = \sigma_{0}^{2} \left( \frac{1}{2} (1 + s_{2}z) + \sqrt{\frac{1}{4} (1 + s_{2}z)^{2} + \frac{1}{2}c_{2}z^{2}} \right)$$

- Was independently discovered by TRK (2003, "S3") and Gatheral/Jacquier (2013, "SSVI" = Simple SVI).
- Allows surprisingly varied skew shapes, including "takeover-for-cash" curves as  $c_2 \rightarrow 0$ . See plots.
- Allows fitting of vast majority of US equity names.
- Relatively easy to avoid (butterfly) arbitrage.
- In fact, in terms of the dimensionless variables 
   *σ̂*<sub>0</sub>, *s*<sub>2</sub>, *c*<sub>2</sub>
   can completely answer the butterfly-arbitrage question...

| volatility curve i ittilig              |                                         | Conclusion |
|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |

### S3 shapes: different terms



▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんの

Introduction Dividend Modeling Volatility Curve Fitting Examples Conclusion

#### S3 shapes: different curvatures



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 00000 Conclusion

## S3 shapes: looked at the right way: $\sigma^2$ versus z



Introduction 00000 Volatility Curve Fitting

Conclusion

#### Necessary and Sufficient No-Arb Conditions for S3/SSVI



#### Necessary and Sufficient No-Arb Conditions for S3/SSVI



Introduction 00000 Dividend Modeling

Volatility Curve Fitting

Examples Conclu

## Specific Curves: 5 Parameters (SVI, etc)

 Besides 3 parameters for ATF would be nice to have independent parameters C<sub>±</sub> for wings:

$$\sigma(z)^2 \ o \ \sigma_0^2 \ C_{\pm} \ |z| \qquad {\rm as} \quad z o \pm \infty \qquad (\hat{\sigma}_0 \ C_{\pm} \le 2)$$

- For S3/SSVI:  $C_{\pm} = \sqrt{\frac{1}{4}s_2^2 + \frac{1}{2}c_2} \pm \frac{1}{2}s_2$
- For Jim Gatheral's SVI and others (JW/L5, TRK) the C<sub>±</sub> are independent parameters (constrained by −C<sub>−</sub> ≤ s<sub>2</sub> ≤ C<sub>+</sub>).
- Just some algebra to re-express their "raw" parametrization in terms of natural parameters σ<sub>0</sub>, s<sub>2</sub>, c<sub>2</sub>, C<sub>-</sub>, C<sub>+</sub>. (Or minimum variance ratio instead of c<sub>2</sub>.)
- Can fit some names better than with S3/SSVI.... but surprisingly not much better in many cases!?
- Certainly can not fit W-shaped curves around events (still  $c_2 \ge 0$ ).

Conclusion

## Specific Curves: What to do for most liquid names?

- For very liquid names (SPY, other ETFs, AAPL etc, KOSPI) none of the analytic curves (SVI, L5 or amendments) work well, even in the absence of events.
- There is a fundamental problem with the shapes allowed by these curves: Curvature has unique maximum around ATF, but that's not what the market wants! (Why?)
- Need more flexible shapes that can handle more generic curvature structures, incl. negative curvature around ATF: C5, C6, C7, C8.

| Introduction Di | ividend Modeling | Volatility Curve Fitting | Examples | Conclusion |
|-----------------|------------------|--------------------------|----------|------------|
|                 |                  | 000000000000000000       |          |            |

## Volatility fitting framework

- Input to fitter are implied vols with error bars (after proper div modeling, borrow implication, etc).
- All our vol curves have sensible dimensionless parameters (first three are universal), which allows the use of curve-independent heuristics from 16 years of vol fitting experience across many names, geographies and asset classes.
- Fit one term at a time, transfer information between terms, for smoothness and stability.
- Minimize chi-square + soft penalties, for robustness and to allow the fitting of terms with less (effective) data than parameters.
- Good microprices help, but even then various heuristics are needed to deal with data issues in real-time.
- Keeping track of quality-of-fit metrics and error bars for final outputs is crucial for real-time trading applications.

## Volatility fitting examples

- Examples are fits of American-style options on liquid US ETFs or stocks (plus E-mini futures options).
- Starting with options and underlier prices, we need to:
  - pick interest rate
  - pick cash divs (if appropriate)
  - imply borrow cost for each term to get "American PCP"
  - imply vol-by-strike
  - fit all terms to various vol curves
- Are using simple mid for prices; vol error bars come from bid-ask spread in price space.
- Equity option price data were provided by MayStreet LLC.











<sup>37/59</sup> 



・日本・キャット マンクタイ











0.25





▶ ▲□ ▶ ▲目 ▶ ▲目 ▶ ▲□ ◆ ●





マックト・ビート ビー ション





190

200

180

0.15

0.10

160

170

220

210





0.60

Strike K



・回・・回・・回・ 回・ うへの



![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

| Introduction | Dividend Modeling | Volatility Curve Fitting | Examples<br>00000000 |
|--------------|-------------------|--------------------------|----------------------|
|              |                   |                          |                      |

VXX 20151216-134500 C5: T=0.1784, i=7, chi=0.205, avE5=10

![](_page_53_Figure_3.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_54_Figure_1.jpeg)

55/59

![](_page_55_Figure_0.jpeg)

0.10

1950

2000

Strike K

2100

< □ > < 同 > .

2050

2150

![](_page_56_Figure_0.jpeg)

# Summary and Conclusion

- There is no standardization in the equity options markets around dividend modeling, borrow costs, or vol curves and their calibration.
- No borrow or vol curves are publicly available, historical or live, free or for purchase!
- No vol curves in the public domain can fit liquid names like SPY and AAPL. (Some believe they can only be fit non-parametrically...)
- Superior modeling and numerical expertise are still crucial for fast and robust real-time options valuation.
- Lack of transparency hinders the wider use of options and the efficient transfer of vol information across related products.
- Equity options are due for some major "RND": Rationalization, Normalization and Democratization!
- Hopefully can achieve same as in transition from old to new VIX: A healthier market, larger volumes, esp. from smaller players.
- Want to help? Stay tuned!

Introduction Dividend Modeling Volatility Curve Fitting Conduction Conclusion

#### VOLAR – What we do

- Super-fast, robust, and sensible pricing, fitting, and volatility curve analytics. To start:
  - Drop-in replacements for pain points in most firms' infrastructure: pricer and fitter (simple API, hard analytics underneath)
- Provide, in real-time and historical, all valuation, risk, and trade analysis data and services relevant for options trading firms.
- Consulting, custom design and development
- For more information: info@volar.io